SHORT PAPERS AND NOTES

Gulf of Mexico Science, 2009(2), pp. 125-130
© 2009 by the Marine Environmental Sciences
Consortium of Alabama

GENETIC TOOLS TO IDENTIFY SPECIES OF
SERIOLA IN THE U.S. SOUTH ATLANTIC AND
GULF OF MEXICO.—Four species in the
carangid genus Seriola (greater amberjack, Seriola
dumerili; lesser amberjack, Seriola fasciata; banded
rudderfish, Seriola zonata; and Almaco jack,
Seriola rivoliana) support commercial and recre-
ational fisheries in the U.S. South Atlantic Ocean
(hereafter Atlantic) and the northern Gulf of
Mexico (hereafter Gulf). Of these, greater
amberjack is by far the most preferred, with
commercial landings in the Atlantic and Gulf in
2008 being over four-fold greater than landings
of the other three species combined (http://
www.st.nmfs.noaa.gov/stl/commercial/landings,/
annual_landings.html). Assessments of greater
amberjack resources in the Gulf (Turner et al.,
2000; SEDARY, 2006), have indicated that the
stock was overfished and that overfishing is still
occurring. A major concern (RFSAP, 1996)
regarding estimates of greater amberjack fishing
mortality is misidentification by both commer-
cial and recreational fishers of wundersized
greater amberjack as one of the other three
species, especially banded rudderfish (E. Math-
eson, pers. comm.) All four species are similar in
appearance, with identification of species based
on characters such as length of anal fin base,
length of second dorsal fin lobe, shape of vomer,
and gill raker and fin-ray counts (Berry and
Burch, 1979; Manooch and Raver, 1984; Shipp,
1986). The misidentification issue with respect to
greater amberjack is underreporting of greater
amberjack landings and possibly underestimates
of fishing mortality. What is needed is a simple,
reliable method to identify unequivocally each
species of Seriola regardless of fish size and
morphological character overlap.

Direct sequencing of mitochondrial DNA
(mtDNA) has been used to identify individual
species from closely related congeners in a
number of exploited fishes, including sharks
(Pank et al., 2001; Abercrombie et al., 2005),
salmonids (Purcell et al., 2004), and sciaenids
(Anderson et al., 2009). Typically, the mtDNA
sequences employed display relatively large
interspecies differences but relatively small in-
traspecies differences (Greig et al., 2005). A
second approach (Purcell et al., 2004) has been
to use restrictionfragmentlength polymor-
phisms (RFLPs), where one amplifies an mtDNA

fragment via polymerase chain reaction (PCR),
then digests the fragment with one or more
restriction endonucleases that provide diagnostic
banding patterns. A third approach is to identify
a suite of PCR priming sites that also generate
diagnostic banding patterns (Pank et al., 2001;
Abercrombie et al., 2005) and can be multi-
plexed (Shivji et al., 2002) to significantly reduce
time and/or expense relative to both direct
sequencing and RFLP analysis. In this note, we
report the design and implementation of multi-
plexed PCR primers for mtDNA sequences that
unequivocally allow identification of each of the
four species of Seriola.

Materials and methods—A total of 84 fish were
used in the study: 28 putative greater amberjack
(all from John'’s Island, SC), 32 putative Almaco
jack (13 from John’s Island, SC; 19 from the
Florida Keys), 17 putative banded rudderfish (six
from John’s Island, SC; 11 from Panama City,
FL), and seven putative lesser amberjack (all
from John’s Island, SC). Fin clips were taken
from individual fish and placed in 95% ethanol
(fish sampled in waters off of Florida) or
sarkosyl-urea (fish sampled in waters off of South
Carolina). Identification as to species was made
in the field by colleagues who provided the
samples (see Acknowledgments). Fixed samples
were transported to our laboratory at Texas A&M
and stored at room temperature. Genomic DNA
was extracted from each sample using a standard
phenol-chloroform protocol (Sambrook et al.,
1989).

PCR primers L13562 and H14718 (Inoue et
al., 2000) were used to amplify a fragment
containing sequences of the mitochondrial
protein-coding genes ND-5 and ND-6. The 50-ul
PCR mixture comprised the following: 0.5 um of
each primer, 1X PCR buffer (5X colorless
GoTaq® Flexi buffer, Promega), 2 mM MgCly,
200 uM dNTPs, 2.5 U GoTag® Flexi DNA poly-
merase (Promega), and 5 pl of DNA (unknown
concentration). The PCR protocol was an initial
denaturation at 95°C for 3 min; 45 cycles of
denaturation at 95°C for 30 sec, annealing at
54°C for 45 sec, elongation at 72°C for 2 min;
and a final elongation at 72°C for 20 min. PCR
products were electrophoresed on a 2% agarose
gel; successful amplifications were band-cut and
cleaned with QIAquick gel extraction kits (Qia-
gen). Fragments were sequenced in both direc-
tions, using the L13562/H14718 primers and
ABI BigDye Terminator version 1.1; products
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were electrophoresed on an ABI 3100 automated
DNA sequencer (Applied Biosystems) and se-
quences were edited with Sequencher 3.0 (Gene
Codes). Sequences on the ends were trimmed to
remove regions that were difficult to score; the
remaining 1,113-bp fragment was compared
across all 84 sampled individuals.

An mtDNA haplotype data file was generated
in DnaSP (Rozas et al.,, 2003) in order to
compare haplotypes within and among species.
The Kimura two-parameter model (Kimura,
1980), as employed in MEGA4 (Tamura et al.,
2007), was used to generate estimates of average
evolutionary distance within and between spe-
cies. MEGA4 also was used to generate a
neighbor-joining (NJ) tree; bootstrap values for
nodes in the inferred NJ topology were generat-
ed from 500 replications. Initial evaluation of the
NJ topology revealed four individuals that had
been likely misidentified in the field; three
individuals identified as lesser amberjacks had
mtDNA haplotypes virtually identical (=0.8%
sequence divergence) to those of 31 of the
individuals identified as Almaco jacks, whereas
one individual identified as an Almaco jack had a
haplotype virtually identical (=0.4% sequence
divergence) to those of 28 individuals identified
as greater amberjacks. The degree of difference
between the average evolutionary distance
within each species compared to that between
species (see Results) essentially eliminated the
possibility that these four individuals were
correctly identified. The four individuals were
then reassigned to the correct species and the
average evolutionary distances and the NJ topo-
logy re-estimated.

Consensus mtDNA sequences for each species
were generated and aligned using ClustalX
2.0.11 (Larkin et al., 2007). Species-specific
PCR primers were then designed based on
regions where a sequence of bases that were
unique to each species was identified. Each
species-specific primer site was located in a
different region of the 1,113-bp fragment such
that different (species-specific) size fragments
would be generated when each species-specific
primer was used in tandem with the H14718
primer. Species-specific primers designed were
as follows: greater amberjack, Sdu-L. (5'-CCAAG
TATACGACCATATAAGTGA-3'); lesser amber-
jack, SfaL. (5'-CCGCCTCTAATCTTCCTTT-3');
banded rudderfish, SzoL. (5'-CGCTAATAAC
TAGCATTCACC-3'); and almaco jack, SriL (5'-
GCTAGCTGCCCTGACAGTC-3"). All four spe-
cies-specific primers were combined with the
H14718 primer in a single 10-ul PCR multiplexed
mix that included the same recipe of reagents
previously mentioned but with a few differences:
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0.2 um of each primer, 0.5 U GoTaq® Flexi DNA
polymerase (Promega), and 1 ul of DNA
(unknown concentration). The PCR protocol
was the same as mentioned previously except
with a decrease in the number of cycles (38
total). The H14718/1.13562 primer pair also was
evaluated in the PCR multiplexes as a positive
control for PCR amplifications (Shivji et al.,
2002). This primer pair yielded a second
distinguishable band that was larger than all
four species-specific bands. PCR amplifications
with species-specific primers pairs and both with
and without the H14718/L13562 primer pair
were performed for all 84 individuals; fragments
generated were size-separated on 2% agarose
gels, stained with ethidium bromide, and viewed
under ultraviolet (UV) light.

Results and  discussion.—The distribution of
mtDNA haplotypes is given in Table 1; there
were a total of 39 haplotypes, none of which were
shared between species. The number of haplo-
types within each species ranged from three (S.
fasciata, four individuals) to 14 (S. zonata, 17
individuals). The mean evolutionary distances
(sequence divergence), given in Table 2, were
two orders of magnitude higher between species
than within species; within-species values ranged
from 0.1% (S. fasciata) to 0.8% (S. rivoliana),
whereas between-species values ranged from
11.4% (S. dumerili vs S. rivoliana) to 17.8% (8.
rivoliana vs S. zonata). The NJ topology (Fig. 1)
presents a visual representation of the high levels
of between-species difference as compared to
within-species difference. Bootstrap values uniting
mtDNA haplotypes within each species were 100%.

Multiplex PCR amplifications, using the spe-
cies-specific PCR primers, were successful for all
84 individuals. A subset of the individuals assayed
is shown in Figure 2. Species-specific bands
(fragments) were S. dumerili, ~300 bp; S. zonata,
~500 bp; S. fasciata, ~700 bp; and S. zonata,
~950 bp). All species-specific bands were easily
distinguishable by size on a 2% agarose gel
stained with ethidium bromide and viewed
under UV light. Addition of the L.13562 primer
successfully added a positive control band
(~1100 bp) that was distinguishable by size from
the four species-specific bands (Fig. 2). In a
number of instances, there was noticeably
weaker amplification of the positive control
(Fig. 2: lanes 14, 16, and 25); Shivji et al
(2002) observed similar results in their study of
pelagic sharks. In general, smaller products are
amplified more efficiently during PCR, providing
a plausible explanation for weaker amplification
of the larger positive-control band described
both in Shivji et al. (2002) and the present study.
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TasLe 1. Summary of mtDNA haplotypes for 84 individuals, obtained from a 1,113-bp fragment of the protein

coding ND-5 and ND-6 mitochondrial genes. MtDNA haplotype sequences are available online under their

corresponding GenBank accession numbers. Sampling localities, South Carolina (SC) and Florida (FL), are noted
with the number of individuals sharing the same mtDNA haplotype within each locality in parentheses.

Haplotype GenBank Seriola species Location (sample size)

1 GU014709 Greater amberjack (S. dumerili) SC (2)

2 GU014710 Greater amberjack (S. dumerili) SC (5)

3 GU014711 Greater amberjack (S. dumerili) SC (3)

4 GU014712 Greater amberjack (S. dumerili) SC (1)

5 GU014713 Greater amberjack (S. dumerili) SC (2)

6 GU014714 Greater amberjack (S. dumerili) SC (2)

7 GU014715 Greater amberjack (S. dumerili) SC (1)

8 GU014716 Greater amberjack (S. dumerili) SC (1)

9 GU014717 Greater amberjack (S. dumerili) SC (1)
10 GU014718 Greater amberjack (S. dumerili) SC (3)
11 GU014719 Greater amberjack (S. dumerili) SC (b)
12 GU014720 Greater amberjack (S. dumerili) SC (3)
13 GU014721 Lesser amberjack (S. fasciata) SC (2)
14 GU014722 Lesser amberjack (S. fasciata) SC (1)
15 GUO014723 Lesser amberjack (S. fasciata) SC (1)
16 GU014724 Almaco jack (S. rivoliana) SC (4), FL (2)
17 GU014725 Almaco jack (S. rivoliana) SC (5), FL (7)
18 GU014726 Almaco jack (S. rivoliana) SC (1)
19 GU014727 Almaco jack (S. rivoliana) SC (1)
20 GU014728 Almaco jack (S. riwvoliana) SC (1)
21 GU014729 Almaco jack (S. rivoliana) SC (1), FL (8)
22 GU014730 Almaco jack (S. rivoliana) SC (1)
23 GU014731 Almaco jack (S. rivoliana) SC (1)
24 GU014732 Almaco jack (S. riwvoliana) SC (1)
25 GU014733 Almaco jack (S. rivoliana) FL (1)
26 GUO014734 Banded rudderfish (S. zonata) FL (1)
27 GU014735 Banded rudderfish (S. zonata) FL (1)
28 GU014736 Banded rudderfish (S. zonata) SC (1), FL (1)
29 GU014737 Banded rudderfish (S. zonata) FL (1)
30 GU014738 Banded rudderfish (S. zonata) FL (1)
31 GU014739 Banded rudderfish (S. zonata) FL (1)
32 GUO014740 Banded rudderfish (S. zonata) FL (1)
33 GU014741 Banded rudderfish (S. zonata) FL (2)
34 GUO014742 Banded rudderfish (S. zonata) FL (1)
35 GUO014743 Banded rudderfish (S. zonata) FL (1)
36 GU014744 Banded rudderfish (S. zonata) SC (2)
37 GU014745 Banded rudderfish (S. zonata) SC (1)
38 GU014746 Banded rudderfish (S. zonata) SC (1)
39 GU014747 Banded rudderfish (S. zonata) SC (1)

TasLe 2. Kimura two-parameter mean evolutionary distances: sequence divergence within (diagonal) and
between (below diagonal) species.

Greater amberjack Lesser amberjack Almaco jack Banded rudderfish
Greater amberjack 0.004
Lesser amberjack 0.130 0.001
Almaco jack 0.114 0.144 0.008

Banded rudderfish 0.158 0.157 0.178 0.004
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Fig. 1. Neighbor-joining tree derived from a 1,113-bp fragment of the protein coding ND-5 and ND-6
mitochondrial genes. Sequences are clustered into four species groups: greater amberjack (Seriola dumerili), lesser
amberjack (Seriola fasciata), Almaco jack (Seriola rivoliana), and banded rudderfish (Seriola zonata). Node bootstrap
values were generated from 500 replications. Scale bar represents 1% sequence divergence.

The weaker amplification of the positive-control The four species of Seriola in the Atlantic and
sequence did not detract from the ability to Gulf are difficult to identify correctly, in part
identify each species of Seriola as the intensity of because of overall similarity in appearance, and
the species-specific bands was unaffected. in part because characters used to identify each
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Fig. 2. Sample gel image of species-specific fragments (bands). Lanes 1-12 are without the positive control;
lanes 14-25 include the positive control (~1,100-bp fragment). Lanes 1-3/14-16 are greater amberjack (Seriola
dumerili, ~300 bp); lanes 4-6/17-19 are banded rudderfish (Seriola zonata, ~500 bp); lanes 7-9,/20-22 are lesser
amberjack (Seriola fasciatus, ~700 bp); and lanes 10-12/23-25 are Almaco jack (Seriola rivoliana, ~950 bp). Lanes
13 and 26 are sizing ladders (100-bp DNA ladder, New England BioLabs), with 100-, 500-, and 1,000-bp fragments
marked on the right. The same three individuals from each species were assayed in lanes 1-12 and 14-25.

species (length of anal fin base and second
dorsal fin lobe, shape of vomer, and gill raker
and finray counts) often have overlapping
ranges (Berry and Burch 1979; Manooch and
Raver, 1984; Shipp, 1986). This difficulty was
evident in our study as four of the individuals
assayed were misidentified in the field. The
two—order-of-magnitude difference in sequence
divergence of the ND-5/ND-6 fragment be-
tween as compared to within the four species
of Seriola, however, indicates that the mtDNA
fragment is a reliable tool to identify each
species unequivocally.

Application of this method on a larger scale is
necessary to estimate the overall magnitude of
misidentification in landings of species of Seriola.
Ideally, landings of species of Seriola in the
commercial catch could be sampled and the
percentage of misidentification recorded. This

ostensibly would allow for correction of landings
relative to individual species that could be
incorporated into estimates of fishing mortality,
especially for greater amberjack. A caveat is that
the geographic distributions of the four species,
in particular the circumglobally distributed
greater amberjack and Almaco jack (Shipp,
1986), make it possible that mDNA haplotypes
have yet to be sampled and that these additional
haplotypes may contain mutations in priming
sites that would inhibit amplification of the
species-specific fragments developed in this
study. More comprehensive sampling could
address this concern; adjustments to the spe-
cies-specific primers in response to additional
data, however, should be straightforward. In
addition, sequencing of the ND-5/ND-6 frag-
ment undoubtedly would provide unequivocal
identification of each species.
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