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A genetic linkage map of anonymous and gene-linked microsatellites was generated for red drum, an economi-
cally important sciaenid fish cultured for both restoration enhancement and commercial food-fish production.
The consensus map, based on linkage data combined from two full-sib families, consisted of 486 total
microsatellites (440 anonymous, 46 gene-linked), and spanned 24 linkage groups corresponding to the 24 (hap-
loid) red drum chromosomes. The linkage map generated was used to identify regions of shared synteny be-
tween red drum and four other percomorph species for which genome assemblies are available. Considerable
synteny was observed between red drum and all four comparison species, and a synteny-based mapping ap-
proach was used to putatively localize an additional 80 genes and monomorphic, gene-linked microsatellites
within the red drum genome. The genetic linkagemapwill be a valuable resource for red drum aquaculture, par-
ticularly for candidate-gene approaches to identify and map quantitative trait loci.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Red drum, Sciaenops ocellatus, is an estuarine-dependent, sciaenid
fish that is cultured for both restoration enhancement of wild popula-
tions and commercial production of food fish. The native distribution
of the species is throughout the Gulf of Mexico from Tuxpan, Mexico,
to southwestern Florida and along the eastern coast of the United
States from southeastern Florida to Massachusetts (Pattillo et al.,
1997). In response to declines in red drum abundance in the 1980s,
red drum restoration-enhancement programs have been implemented
in Texas, Florida, Georgia, and South Carolina (McEachron et al., 1995;
Smith et al., 2001; Tringali et al., 2008; Woodward, 2000). In China,
sciaenid fishes, including red drum, are the largest source of marine fin-
fish fry production (Hong and Zhang, 2003). Globally, commercial pro-
duction of red drum has risen sharply in recent years, increasing from
2115 tons in 2000 to 67,977 tons in 2012 (http://www.fao.org/fishery/
statistics/global-aquaculture-production/query/en).

A central problem in commercial aquaculture ismaximizing produc-
tion efficiency. Genetic improvement of farmed aquatic species has
been suggested as a permanent and cumulative solution to this problem
(Gjedrem et al., 2012). Most traits targeted by selective breeding pro-
grams are influenced by many genes (quantitative trait loci, QTL) with
additive effects and/or epistatic interactions (Falconer and Mackay,
1996; Lynch and Walsh, 1998). Genetic marker-based breeding
Texas A&M University-Corpus
567; fax: +1 361 825 2025.
C.M. Hollenbeck).
schemes that exploit linkage associations between easily screened ge-
netic markers and QTL offer advantages over traditional breeding pro-
grams, particularly for traits that are difficult to measure and for
species with relatively long generation times (Hulata, 2001; Sonesson,
2007). Genetic linkage maps of polymorphic markers are a critical first
step in establishing marker-based selection programs and also provide
a framework for physical mapping and genome assembly (Danzmann
and Gharbi, 2007; Liu and Cordes, 2004).

An alternative strategy for identifying QTL is a candidate-gene ap-
proach where a priori information about a gene's biological function is
used to predict that gene's impact on a trait of interest (Lynch and
Walsh, 1998). This approach has been used in fishes to identify QTL
affecting spawning time (Leder et al., 2006), growth rate
(Sánchez-Molano et al., 2011; Tao and Boulding, 2003), and sex deter-
mination (Loukovitis and Sarropoulou, 2012; Shirak et al., 2006). Fur-
ther, the advent of next-generation DNA sequencing has led to the
generation of massive amounts of genetic sequence data for many fish
species, including awhole genomeassembly of the economically impor-
tant Nile tilapia, Oreochromis niloticus (http://www.ncbi.nlm.nih.gov/
genome/197). The ever-increasing availability of DNA sequence data
facilitates candidate-gene approaches through comparative genomics
by taking advantage of interspecies synteny – the possession of similar
chromosomal regions due to common evolutionary descent – to trans-
fer relevant genomic information obtained from studies on well-
characterized species to studies involving emerging species
(Sarropoulou et al., 2007). Oneway of identifying synteny between spe-
cies is to assess the distribution of shared genetic markers in both ge-
nomes and identify regions where a common ordering of those
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markers occurs. Type-I (protein-encoding) genetic markers (O'Brien,
1991) are ideal for this approach as they are often conserved between
species, andwhen incorporated into a linkagemap can provide a frame-
work for comparative genomic analysis.

Here, we present a genetic linkage map for red drum, expanding
upon previous work (Karlsson et al., 2007; Portnoy et al., 2010, 2011)
by the addition of 177 anonymousmicrosatellites and 46microsatellites
closely linked to Type-I loci. We report the map locations of a total of
486 microsatellites, including the 46 linked to Type-I loci, spanning all
24 (haploid) red drum chromosomes.We also demonstrate the applica-
tion of the genetic map as a tool for candidate-gene identification
through comparative genomics by putatively localizing an additional
80 known (but previously unmapped) red drum protein-encoding
genes and microsatellites closely linked to Type-I loci (EST-SSRs),
using a synteny-based mapping approach.

2. Materials and methods

In previous studies (Karlsson et al., 2007; Portnoy et al., 2010, 2011),
two full-sib mapping families (Family A, n = 103; and Family B, n =
104), generated from outbred, single-pair crosses carried out at theMa-
rine Development Center of the Texas Parks and Wildlife Department
(TPWD), were used. This study took advantage of the same tissue sam-
ples used in those studies; details of crosses, spawning, egg collection,
and larval grow-out may be found in Portnoy et al. (2010) and refer-
ences therein.

A total of 177 polymorphic, anonymous microsatellites were isolat-
ed from a repeat-enriched library. Details of enriched-library prepara-
tion, primer sequences, and summary statistics for each microsatellite
can be found in Renshaw et al. (2012). In addition, 133 expressed se-
quence tag-linked microsatellites (EST-SSRs) were designed following
the comparative approach outlined in Hollenbeck et al. (2012). Summa-
ry information, including repeat motif, primer sequences, and putative
identity for all EST-SSRs are given in Supplementary Table 1. Genomic
DNA was extracted following a modified Chelex extraction protocol
(Estoup et al., 1996). Following removal of residual Chelex by centrifu-
gation at 16,000 ×g, 1 μl of supernatant was used for each PCR reaction,
following Portnoy et al. (2010). The 177 anonymousmicrosatellites and
the 46 microsatellites linked to Type-I loci (=223 total) yielded
mapping-informative genotypes in at least one parent and were subse-
quently genotyped in the appropriate progeny. Genotyping was con-
ducted following procedures outlined in Portnoy et al. (2010).

Because individuals genotyped in this study also were used in prior
mapping efforts, genotype data from the 223 microsatellites scored
here were combined with genotypes at the 264 microsatellites assayed
previously by Karlsson et al. (2007) and Portnoy et al. (2010, 2011).
Linkage analysis was conducted with the program JoinMap v 4.1 (Van
Ooijen, 2012) and linkage groups were defined initially by using
microsatellites previously assigned to the 24 red drum linkage groups
(Portnoy et al., 2011). New markers were assigned to existing linkage
groups, using an LOD threshold of 3.0. Marker order for each linkage
group was computed using the maximum-likelihood (ML) mapping
function implemented in JoinMap. Tests for segregation distortion for
each marker were carried out using a chi-square goodness-of-fit test;
probabilities of individual genotypes, conditional upon the map order,
were computed to check for possible genotyping errors. A preliminary
map was generated for each parent, and marker order was compared
between individuals to ensure order agreement. If marker order for
each linkage group was in agreement across all parents, a family-
specific map was generated using the multipoint ML algorithm for
map construction with full-sib outbred families, as implemented in
JoinMap and described in van Ooijen (2011). Briefly, the algorithm gen-
erates separate ML maps for each parent in a cross, and then integrates
themaps by averaging distances between shared intervals and interpo-
lating or extrapolating positions of markers segregating in only one of
the parents. Family-specific maps were then checked for marker order
agreement. Finally, both family-specific maps were integrated into a
consensus map, using the program MergeMap (Wu et al., 2011),
which has been demonstrated to produce more accurate consensus
maps than JoinMap (Galeano et al., 2011; Wu et al., 2011). In addition,
to investigate sex-related differences in recombination rates, female-
and male-specific maps were generated using the regression mapping
algorithm in JoinMap.

The consensusmapwas used to compare the red drumgenomewith
assembled genome sequences and chromosome designations of four
other fishes: Nile tilapia (O. niloticus), three-spined stickleback
(Gasterosteus aculeatus), green spotted puffer (Tetraodon nigroviridis),
and Japanese pufferfish (Takifugu rubripes). The most recent assembly
of each species' genome (Nile tilapia, v 1.1, http://www.ncbi.nlm.nih.
gov/genome/197; three-spined stickleback, v 1.0, http://www.ensembl.
org/Gasterosteus_aculeatus/Info/Index; green spotted pufferfish,
v 8, http://www.ensembl.org/Tetraodon_nigroviridis/Info/Index;
Japanese pufferfish, v 5, http://www.ncbi.nlm.nih.gov/genome/63)
was downloaded to a Linux server. The discontiguous-megablast al-
gorithm in NCBI's BLAST+ suite (Camacho et al., 2009) was used to
compare flanking sequences of the original clone of each mapped red
drummicrosatellite or EST sequence (for EST-SSRs) with each compar-
ison genome. Clone sequenceswere available onGenBank for 429 of the
440 mapped anonymous microsatellites; clone sequences of 11 of the
anonymous microsatellites were not available. In total, 475 mapped
microsatellites (429 anonymous and 46 EST-SSRs) were used in the
BLAST search. Matches were considered similar if they had a region of
≥50 bp of sequence overlap and had an e-value of≤10−10. To prevent
duplicated sequences from confounding results, only sequences with a
single match within a genome were considered for further analysis.
Chromosome number and chromosomal position (in base pairs) was
recorded for each hit, and Oxford plots comparing the red drum linkage
map to the genome of each of the four comparison species were gener-
ated, using the GRID graphics package in R (Murrell, 2005). As the com-
parison speciesmost relevant to aquaculture, Nile tilapiawas chosen for
a more detailed analysis of synteny with red drum. To visualize the ex-
tent of marker collinearity between red drum and Nile tilapia, positions
of markers with significant matches to the Nile tilapia genome were
coded as relative positions along the length of their respective chromo-
somes/linkage groups. For Nile tilapia, the start position of the marker,
in base pairs, was divided by the total length of the chromosome, in
base pairs. For red drum, the position of each marker, in centiMorgans
(cM), on the consensusmapwas divided by the total length of the link-
age group, in cM. Based on the observation that the majority of individ-
ual red drum linkage groups corresponded to individual Nile tilapia
chromosomes, the latter were reorganized along the y-axis such that
chromosomes homologous between the two species aligned along the
diagonal axis of the graph. Shared markers were then plotted based
on their relative positions on linkage groups/chromosomes. A custom
Perl script (available upon request from CMH) was used to identify
blocks of shared synteny between red drumchromosomes and chromo-
somes of each of the four comparison species. Syntenic blocks were de-
fined as sets of markers on the same linkage group and in the same
order in both species, uninterrupted by any other sharedmarker. Order-
ing mismatches betweenmarkers that were separated by less than five
percent of the total length of a linkage group/chromosome were ig-
nored in order to maximize detection of informative syntenies other-
wise disrupted by small-scale, local rearrangements or ordering errors
caused by uncertainty in the mapping process. Syntenic regions from
chromosomes involved in apparent rearrangements observed from
the Oxford plots were plotted as circular ideograms, using the software
CIRCOS v 0.66 (Krzywinski et al., 2009).

A synteny-basedmapping approach was used to identify likely loca-
tions of red drum coding genes that were archived on NCBI's GenBank
and of EST-SSRs that were characterized by Hollenbeck et al. (2012)
but which were monomorphic in mapping families and could therefore
not be mapped via linkage analysis. Nucleotide sequences for 85 red
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drum coding genes were downloaded from GenBank and reduced to 72
novel nucleotide sequences by excluding duplicate entries for the same
locus. These sequences and the 87 monomorphic EST-SSRs were com-
pared by BLAST search to each of the four comparison genomes, using
the same criteria mentioned above. Given that these loci are known to
exist in the red drum genome, a locus that maps in another species to
a syntenic region shared between red drumand that species likely exists
in the same region of the red drum genome. Thus, these loci were
mapped to the genomes of the four comparison species, and when red
drum genes and EST-SSRs mapped into computed syntenic regions in
at least one other species, the locus was putatively localized to that
marker interval in red drum.

3. Results

The genetic linkage map constructed for Family A contained 372
microsatellites, including 32 linked to Type-I loci; the map for Family
B contained 406 microsatellites, including 34 linked to Type-I loci. The
map for Family A had a total size of 1641.2 cM, with an average linkage
group size of 68.38 cM and an average marker interval of 4.81 cM; the
map for Family B had a total size of 1722.0 cM, with an average linkage
group size of 71.75 cM and an average marker interval of 4.55 cM. The
consensus map (Fig. 1) contained 486 microsatellites, including 46
linked to Type-1 loci. The total size, average linkage group size, and av-
erage marker interval of the consensus map were 1815.3 cM, 75.64 cM,
and 3.96 cM, respectively. A single microsatellite, Soc685, which was
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Fig. 1. Consensus genetic linkage map based on segregation in two full-sib families of red drum
while marker names are given on the right; marker names in bold represent gene-linked (Typ
mapped to linkage group eight in a previous study (Portnoy et al.,
2010), was removed from the final map due to the presence of signifi-
cant segregation distortion in all four parents. Of the 46 microsatellites
linked to Type-1 loci, 38 (82.6%) could be assigned a putative identity
following a BLASTN search of NCBI's nucleotide (nt) database (Supple-
mentary Table 1). Analysis of sex-specific maps in all 24 haploid chro-
mosomes revealed differences in recombination fraction in marker
intervals shared betweenmale and female linkagemaps (Supplementa-
ry Table 2). The overall ratio of recombination fractions for all shared in-
tervals was 1.14:1 (♀:♂).

Of the 429 anonymous microsatellites with available clone se-
quences, 163 (38.0%) had significant homology to the Nile tilapia ge-
nome. Of these, six were excluded from further analysis due to
homologies with sequences on multiple chromosomes. A total of 41
(89.1%) of the 46microsatellites linked to Type I loci showed significant
sequence similarity to the Nile tilapia genome; of these, three were ex-
cluded due to similarity to regions on multiple chromosomes. The total
number of BLAST hits across both microsatellite types was 204 (Nile ti-
lapia), 154 (three-spined stickleback), 105 (Japanese pufferfish), and 84
(green spotted pufferfish).

Oxford plots for all species (Fig. 2) revealed significant homology be-
tween reddrum linkage groups and chromosomes of the four comparison
species, with an approximate one-to-one relationship observed between
red drum linkage groups and the chromosomes of each of the species. A
number of both intra- and inter-chromosomal rearrangements, however,
appear to have occurred since red drum and each of the four comparison
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Fig. 2.Oxford plots displaying synteny between linkage groups of red drum and chromosomes of four comparison species. Abscissa: linkage groups 1–24 of red drum; ordinate: chromo-
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species diverged from common ancestors. Examples of inferred chromo-
somal rearrangements, based on shared syntenic group locations, are pre-
sented in Fig. 3. Several instances where linkage groups on the same red
drumchromosomeoccurredonmore thanone chromosomeof a compar-
ison species were observed; these included five instances in Nile tilapia
and three instances each in the other three comparison species. Finally,
a comparison of marker order between putatively homologous chromo-
somes in red drum and Nile tilapia revealed large regions of synteny
and shared marker order between the two species (Fig. 4). Shared
markers generally aligned along the diagonal axis of the plot, which is ex-
pected if markers are largely collinear.

Based on criteria described above, 47 syntenic regions were identified
between red drum and Nile tilapia and a total of 172microsatellites were
placed into syntenic regions. The number of microsatellites per syntenic
region ranged from two to ten, with a mean of 3.66. Combined, syntenic
regions spanned 306 Mb (46.6%) of the Nile tilapia genome assembly
and 838.29 cM (46.2%) of the red drum map. In addition, 33, 30, and 23
syntenic regions were identified between red drum and three-spined
stickleback, Japanese pufferfish, and green spotted puffer, respectively;
syntenic regions spanned 37.8% (three-spined stickleback), 36.5%
(Japanese pufferfish), and 32.1% (green spotted pufferfish) of the species'
genome assemblies.

Of the 72 protein-encoding genes in red drum available on GenBank,
50 had a single hit to the genome of at least one of the four comparison
species. Of these, 28 (50.6%) were mapped to a genomic interval by
synteny-based mapping. Of the 87 monomorphic EST-SSRs in red
drum, 79 had a single hit to the genome of at least one of the four com-
parison species; 52 of these (65.8%) were mapped with the same ap-
proach. Fifty of the EST-SSRs were assigned a putative identity based
on a BLASTN search of NCBI's nt database. A summary of the 28
protein-encoding genes and the 52 EST-SSRs, including GenBank acces-
sion number, putative identity, flanking markers, species in which the
syntenic regions are conserved, linkage group in red drum, and estimat-
ed genome interval size, is given in Table 1. The map locations of 17 of
the coding genes and of 25 of the EST-SSRs were supported by shared
synteny in more than one of the four comparison species.

4. Discussion

An additional 227 microsatellites were added to the existing red
drum map, increasing the total number of mapped microsatellites to
486 (440 anonymous, 46 linked to Type-I loci). The addition of these
microsatellites decreased the inter-marker interval from 6.28 cM (pre-
vious sex-averaged map) to 3.96 cM. The total length of the consensus
map was 1815.3 cM. This is larger than the size (1196.9 cM) of the
sex-averaged map reported previously (Portnoy et al., 2010), for two
possible reasons. First, the additional microsatellites sampled more of
the chromosomal content of the red drum genome by mapping
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locations distal to markers on the previous map; and second, a compo-
nent of the difference is likely attributable to the process of merging
family-based maps into a single consensus map. Because of known
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Table 1
Summary of synteny-mapped loci. Accession no.— GenBank accession number of a gene sequence or EST; Function— the assigned gene name from GenBank or a significant BLASTN hit
(ESTs); Flanking loci— the closest red drummarkers betweenwhich the locus fromGenBank could bemappedbased on syntenywith another species; Comparison species— the species in
which a syntenic relationship with red drum existed: 1: three-spined stickleback, 2: green spotted puffer, 3: Nile tilapia, 4: fugu; Linkage group— the red drum linkage group towhich the
locus was mapped; Interval — the size of the corresponding marker interval in centiMorgans on the red drummap.

Accession no. Putative function Flanking loci Comparison species Linkage group Interval

Genes
AF062520.1 Sciaenops ocellatus

Somatolactin precursor
Soc646 Soc418 1, 3 5 17.28

AF064872.1 Sciaenops ocellatus
Translation initiation factor eIF-2B precursor

Soc810 Soc880 1, 2, 3, 4 17 6.68

AY677170.1 Sciaenops ocellatus
Salmon-type gonadotropin-releasing
hormone precursor

Soc-Lcr03 Soc-Dla91 1, 3 9 16.4

AY677171.1 Sciaenops ocellatus
Chicken II-type gonadotropin-releasing
hormone precursor

Soc-Mmi10 Soc1065 1 10 72.2

AY876899.1 Sciaenops ocellatus
Hemoglobin beta chain

Soc1148 Soc-Dla28 4 15 25.22

FJ415100.1 Sciaenops ocellatus
Peptidoglycan recognition protein II

Soc-Dla97 Soc1125 4 1 16.33

GQ384067.1 Sciaenops ocellatus
11 beta-hydroxylase (CYP11B)

Soc-Dla10 Soc1115 1, 3 6 7.62

GQ384068.1 Sciaenops ocellatus
21-hydroxylase (CYP21)

Soc-Dla10 Soc1115 3 6 7.62

FJ641038.1 Sciaenops ocellatus
Neuronal nitric oxide synthase

Soc-Dla01 Soc-Dla71 2, 3, 4 19 3.66

GU144512.1 Sciaenops ocellatus
Glycoprotein alpha subunit

Soc1139 Soc550 2, 3 16 38.15

GU144513.1 Sciaenops ocellatus
Thyrotropin beta subunit

Soc1087 Soc-Dla96 1, 2 10 67.26

GU799603.1 Sciaenops ocellatus
Insulin-like growth factor I

Soc978 Soc-Dla90 2, 4 23 39.33

GU368832.1 Sciaenops ocellatus
Recombination activating protein 1 (RAG1)

Soc719 Soc1092 1 24 22.63

GU368812.1 Sciaenops ocellatus
si:dkey-174m14.3 gene

Soc810 Soc1072 4 17 13.86

GU370888.1 Sciaenops ocellatus
ISG15

Soc758 Soc569 1, 3, 4 19 10.37

GU929942.1 Sciaenops ocellatus
Viperin (Vip)

Soc1139 Soc550 2, 3 16 38.15

HM581689.1 Sciaenops ocellatus
Putative tissue factor pathway inhibitor 1

Soc1141 Soc1128 4 11 16.33

HM368401.1 Sciaenops ocellatus
Putative tissue factor pathway inhibitor 2 (TFPI2)

Soc-Dla09 Soc1108 1 14 10.57

HQ651238.1 Sciaenops ocellatus
High mobility group protein B1 (HMGB1)

Soc949 Soc1017 3, 4 5 0.98

HQ731135.1 Sciaenops ocellatus
FIC domain-containing protein (ficd)

Soc-Dla01 Soc-Dla71 1, 2, 3, 4 19 3.66

HQ731297.1 Sciaenops ocellatus
Receptor-interacting serine–threonine kinase 4 (RIPK4)

Soc-Dla72 Soc820 1, 3 20 10.92

JX002675.1 Sciaenops ocellatus
Eukaryotic translation initiation factor 3 subunit G (eTIF3)

Soc1040 Soc804 2, 4 4 7.42

JX002676.1 Sciaenops ocellatus
NADH dehydrogenase 1 alpha (ND1)

Soc1141 Soc1128 4 11 16.33

JQ938122.1 Sciaenops ocellatus
Hypothetical protein (GCS1)

Soc991 Soc1063 2 1 13.46

JQ938817.1 Sciaenops ocellatus
Peroxisomal enoyl-CoA hydratase/L-3-hydroxyacyl-CoA
dehydrogenase (EHHADH)

Soc565 Soc1141 1, 3, 4 11 33.45

JQ939810.1 Sciaenops ocellatus
LOC562320 (KIAA1239)

Soc-Dla68 Soc640 1, 4 3 24.44

KC830168.1 Sciaenops ocellatus
Sushi/von Willebrand factor type A/EGF/pentraxin
domain-containing 1 (SVEP1)

Soc-Dla68 Soc640 1 3 24.44

KF140446.1 Sciaenops ocellatus
T-box brain 1 (tbr1)

Soc565 Soc1141 1, 3, 4 11 33.45

EST-SSRs
FP242838.1 Oreochromis niloticus

Arginine–glutamic acid dipeptide (RE) repeats (rere)
Soc1052 Soc578 1, 2, 4 21 10.62

FM010232.1 Neolamprologus brichardi
Calcium/calmodulin-dependent protein kinase
type II subunit gamma-like (LOC102781265)

Soc-Dla59 Soc-Dla79 1, 3 15 10.3

FK943099.1 Anoplopoma fimbria
Beta-synuclein

Soc-Dla02 Soc1129 1, 2, 3, 4 8 5.85

FP237559.1 Neolamprologus brichardi
Guanine nucleotide-binding protein G(s) subunit
alpha-like (LOC102788485)

Soc-Mmi10 Soc1065 1 10 72.2
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Table 1 (continued)

Accession no. Putative function Flanking loci Comparison species Linkage group Interval

FP241017.1 Maylandia zebra
DNA damage-binding protein 1-like (LOC101485195)

Soc718 Soc1048 4 12 19.2

FP238020.1 Oreochromis niloticus
Protein phosphatase 1 regulatory subunit 14B-like
(LOC100711861)

Soc-Dla66 Soc708 1, 3 3 13.45

FL488459.1 Oreochromis niloticus
Protein-L-isoaspartate (D-aspartate) O-methyltransferase-like
(LOC100708432)

Soc-Lcr14 Soc-Dla89 3, 4 17 2.11

FK941535.1 Oreochromis niloticus
Elongation of very long chain fatty acids
protein 6-like (LOC100706271)

Soc694 Soc1050 3 8 0.48

CV186185.1 Danio rerio
si:dkey-11e23.5 (si:dkey-11e23.5)

Soc810 Soc1072 4 17 13.86

FM028201.1 Oreochromis niloticus
Phosphatidylserine synthase 1 (ptdss1)

Soc-Dla10 Soc412 1, 3, 4 6 1.92

FM001773.1 Oreochromis niloticus
ATPase asna1-like (LOC100702925)

Soc991 Soc1063 2, 3 1 13.46

FK940504.1 Haplochromis burtoni
Protein FAM212A-like (LOC102290510)

Soc825 Soc-Mmi10 1, 3, 4 10 0.25

FM000143.1 Maylandia zebra
Prospero homeobox protein 1-like (LOC101476671)

Soc810 Soc880 1, 2, 3, 4 17 6.68

FM023318.1 Oreochromis niloticus
Thioredoxin reductase 3 (txnrd3)

Soc423 Soc-Dla96 1 10 2.69

FM027384.1 Neolamprologus brichardi
AF4/FMR2 family member 4-like (LOC102796839)

Soc630 Soc1071 2, 4 20 6.16

FM004496.1 Oreochromis niloticus
Disco-interacting protein 2 homolog B-A-like
(LOC100703539)

Soc1052 Soc578 1, 2, 4 21 10.62

FM009184.1 Neolamprologus brichardi
Hippocalcin-like protein 1-like (LOC102792629)

Soc-Dla09 Soc849 3 14 7.16

FM011451.1 Haplochromis burtoni
Myristoylated alanine-rich C-kinase substrate-like
(LOC102308505)

Soc975 Soc921 3 17 2.07

FM000141.1 Oreochromis niloticus
Junction plakoglobin-like (LOC100707214)

Soc430 Soc-Dla97 1, 3 1 15.84

FK940790.1 Oreochromis niloticus
Serine-rich coiled-coil domain-containing protein 2-like
(LOC100710988)

Soc-Lcr03 Soc-Dla91 1 9 16.4

FM010695.1 Neolamprologus brichardi
Neurotrypsin-like (LOC102780776)

Soc-Dla59 Soc1148 3 15 11.33

FM012479.1 Neolamprologus brichardi
MAP7 domain-containing protein 1-like (LOC102788526)

Soc1133 Soc645 3 14 8.82

AM986102.1 Oreochromis niloticus
Protein bicaudal D homolog 2-like (LOC100712336)

Soc642 Soc687 3 21 37.51

FM000541.1 Haplochromis burtoni
Notch-regulated ankyrin repeat-containing protein A-like
(LOC102310701)

Soc657 Soc658 3 22 4.65

FP238879.1 Haplochromis burtoni
Mucin-17-like (LOC102294623)

Soc-Lcr12 Soc657 1, 3 22 41.12

FN565801.1 Oreochromis niloticus
CCAAT/enhancer-binding protein beta-like (LOC100689715)

Soc642 Soc687 3 21 37.51

FM013092.1 Pundamilia nyererei
Lysophospholipid acyltransferase 5-like (LOC102193954)

Soc1115 Soc777 1, 3 6 18.5

AM987101.1 Oreochromis niloticus
LIM domain-binding protein 3-like (LOC100707522)

Soc-Dla59 Soc-Dla79 1, 3 15 10.3

FP237257.1 Haplochromis burtoni
arf-GAP with dual PH domain-containing protein 1-like
(LOC102311544)

Soc-Dla79 Soc-Dla28 2, 4 15 24.19

FM018821.1 Oreochromis niloticus
Ubiquitin specific peptidase 9, X-linked (usp9x),
transcript variant X7

Soc1128 Soc548 1 11 15.24

FP242802.1 Oreochromis niloticus
Calsyntenin-3-like (LOC100707828)

Soc1115 Soc777 1, 3 6 18.5

FM006783.1 Oreochromis niloticus
cAMP-dependent protein kinase type I-alpha regulatory
subunit-like (LOC100711171)

Soc-Dla28 Soc601 3 15 0.99

FM017384.1 Oreochromis niloticus
Beta-14-galactosyltransferase 5-like (LOC100696774)

Soc578 Soc687 2 21 14.27

AM985524.1 Neolamprologus brichardi
Dedicator of cytokinesis protein 8-like (LOC102793453)

Soc-Dla71 Soc439 4 19 16.31

FM007039.1 Oreochromis niloticus
Zinc finger CCCH domain-containing protein 7B-like
(LOC100698451)

Soc-Dla79 Soc-Dla28 2, 4 15 24.19

FM007045.1 Haplochromis burtoni
Breakpoint cluster region protein-like (LOC102292921)

Soc657 Soc658 3 22 4.65

(continued on next page)
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Table 1 (continued)

Accession no. Putative function Flanking loci Comparison species Linkage group Interval

FM012644.1 Neolamprologus brichardi
Forkhead box protein O3-like (LOC102783221)

Soc1072 Soc921 4 17 11.57

FM012811.1 Oreochromis niloticus
Beta-14-galactosyltransferase 5-like (LOC100696774)

Soc578 Soc687 2 21 14.27

FM021649.1 Neolamprologus brichardi
E3 ubiquitin-protein ligase MSL2-like (LOC102797866)

Soc1139 Soc550 2, 3 16 38.15

FM008475.1 Soc1117 Soc588 3 23 15.03
FM013106.1 Neolamprologus brichardi

Calcipressin-3-like (LOC102786199)
Soc1139 Soc550 3 16 38.15

FM000627.1 Haplochromis burtoni
Nuclear factor 1 X-type-like (LOC102293245)

Soc991 Soc1063 2 1 13.46

AM984068.1 Oreochromis niloticus
Cordon-bleu protein-like 1-like (LOC100702457)

Soc565 Soc1141 1, 3, 4 11 33.45

CX348550.1 Oryzias latipes
Basic leucine zipper transcriptional factor ATF-like
(LOC101168259)

Soc810 Soc880 1, 2, 3, 4 17 6.68

CX348556.1 Oreochromis niloticus
Basic leucine zipper transcriptional factor ATF-like
(LOC100690329)

Soc810 Soc880 1, 2, 3, 4 17 6.68

C48612.1 Haplochromis burtoni
Breakpoint cluster region protein-like (LOC102292921)

Soc657 Soc658 3 22 4.65

EV413959.1 Morone saxatilis
Clone apoa1_3 apolipoprotein A-I (ApoA1)

Soc-Lcr09 Soc646 3 5 31.36

GW668767.1 Soc588 Soc971 3 23 7.79
GW668773.1 Maylandia zebra

Basic leucine zipper transcriptional factor ATF-like
(LOC101468837)

Soc810 Soc880 1, 2, 3, 4 17 6.68

GW670899.1 Oreochromis niloticus
Nuclear factor erythroid 2-related factor 1-like
(LOC100705427)

Soc850 Soc1108 1, 3, 4 14 2.28

GW671772.1 Neolamprologus brichardi
Nuclear receptor subfamily 2 group F member
6-like (LOC102781642)

Soc1095 Soc507 1, 3, 4 13 15.69

GW672302.1 Epinephelus coioides
CCAAT/enhancer-binding protein beta 2

Soc642 Soc687 3 21 37.51
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reflect that of a single individual. If a marker is only segregating in one
sex, marker intervals involving that locus in the consensus map will
not be a sex-averaged distance, but will reflect only the recombination
rate in that particular sex (which could be larger or smaller than the
sex-average). In addition, while the software MergeMap outperforms
JoinMap in estimating a merged marker order (Galeano et al., 2011;
Wu et al., 2011), it also inflates inter-marker distance when combining
maps (Khan et al., 2012). However, there exists a tradeoff between ac-
curate estimation of map distances and combining incomplete informa-
tion from multiple individuals into a single map. For purposes of
synteny analysis, establishing the linear order of themaximumnumber
of loci is potentially more useful than having more accurate map
distances.

While QTL mapping was not the intention of this study, the linkage
map will provide useful information for future QTL mapping studies.
For example, the presence of sex-specific differences in recombination
fractions between loci should be taken into account in future QTL
mapping or marker-assisted selection experiments. Analysis of differ-
ences in recombination rates between the sex-specific maps support-
ed the conclusions of Portnoy et al. (2010), in which large differences
were observed in specific chromosomal regions, but the overall ratio
of recombination rates was near unity, with slightly higher recombi-
nation in females (1.03:1 — Portnoy et al., 2010; 1.14:1 — present
study).

The addition of 46microsatellites linked to Type-I loci to the red drum
map is important, as a large percentage of mapped Type-I loci (82.6%)
were assigned a putative function. Further, an appreciably larger percent-
age of microsatellites linked to Type-I loci, relative to anonymous
microsatellites (89.1% vs. 38.0%), were conserved between red drum
and Nile tilapia, demonstrating the utility of microsatellites linked to
Type-I loci for comparative genomics analysis. A comparison of the red
drum linkage map to the genomes of four different percomorph fishes
revealed considerable synteny and that numerous chromosomal
rearrangements had occurred since red drum and each of the comparison
species last shared a common ancestor.While a one-to-one chromosomal
relationship generally was observed between red drum linkage groups
and chromosomes of each of the four comparison species, therewere sev-
eral instanceswhere regions fromdifferent red drum chromosomeswere
found on a single chromosome of a comparison species, and there were
several inferred intra- and inter-chromosomal rearrangements. Overall,
the findings are consistent with previous comparative genomics studies
in teleost fishes where instances of chromosomal repatterning, as well
as a large degree of conserved synteny, have been observed (Kucuktas
et al., 2009; Sarropoulou et al., 2007).

The comparatively high degree of synteny, in terms of total number
of syntenic regions, number of loci present in those regions, and percent
of genome assembly covered by syntenic regions, between red drum
and Nile tilapia was not unexpected. The red drum EST-SSRs were de-
signed by using a comparative approach that utilized an unassembled
version of the Nile tilapia genome to ensure maximum cross-species
amplification (Hollenbeck et al., 2012), and red drum (Family
Sciaenidae; Order Perciformes) and Nile tilapia (Family Cichlidae;
Order Perciformes) are regarded as closer phylogenetically than red
drum is to either sticklebacks (Order Gasterosteiformes) or Japanese
and green spotted pufferfish (Order Tetraodontiformes) (Nelson,
2006). The high degree of synteny and conservation ofmarker order be-
tween red drum and Nile tilapia may be useful in future genetic map-
ping of QTL in red drum. Tilapias, Oreochromis spp., have been the
subject of considerable genetics research related to aquaculture, and
QTL influencing production-relevant traits (e.g., growth rate, immune
and stress response, sex determination, cold tolerance) have been iden-
tified (Cnaani et al., 2003, 2004; Lee et al., 2003, 2004;Moen et al., 2004;
Shirak et al., 2006). Based on the current set of loci shared between the
two species, 47 syntenic blocks spanning 306Mb (46.6% of the Nile tila-
pia genome assembly) were identified and represent chromosomal re-
gions that have remained intact over evolutionary time and likely
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share a significant proportion of homologous genes. Further work to
identify these homologous genes in red drum will soon be underway.

Using the syntenic regions identified from all comparisons, it was
possible to putatively localize an additional 28 red drum protein-
encoding genes (whose sequences were annotated by means of high
homology to sequences in GenBank) and 52 unmapped EST-SSRs to
marker intervals on the red drum map. The 28 coding genes taken
from GenBank are of practical interest as some appear to be involved
in immune response. These include: (i) the neuronal nitric oxide syn-
thase (nNOS) gene, which is expressed in a number of tissues and
thought to be involved in innate immune response (Zhou et al., 2009);
(ii) the high mobility group protein B1 (HMGB1), which is up-
regulated in response to bacterial challenge and is thought to be in-
volved in immune function (Zhao et al., 2011); and (iii) the product of
the tissue factor pathway inhibitor 2 gene (TFPI-2), which is thought
to play a role in the response to bacterial infection (Zhang and Sun,
2011). In addition, 50 of 52 synteny-mapped EST-SSRs could be
assigned a putative function following a BLASTN search. These include
a gene coding for a thioredoxin reductase protein, which has been
shown to be expressed during pathogen infection in rainbow trout
(Pacitti et al., 2014), and a gene encoding a junction plakoglobin gene
product, which has been observed to be upregulated in channel catfish
skin tissue in response to pathogen challenge (Li et al., 2013).

In summary, the current linkage map of 486 total microsatellites
(440 anonymous, 46 gene-linked) proved a powerful tool for compara-
tive genomics. Using synteny-based mapping, we putatively localized
an additional 28 red drum protein-encoding genes and 52 red drum
EST-SSRs. The mapping of highly conserved anchor loci will provide a
framework for future comparative work and should allow researchers
to utilize relevant genomic information from studies involving well-
characterized species to inform candidate-gene approaches to QTL de-
tection in red drum. The general strategy presented for mapping by
synteny can be applied to any species without an available genome as-
sembly, but with an available linkage map. In addition, the map poten-
tially will facilitate identification of chromosomal regions under the
influence of natural selection in wild populations of red drum, and in
this way could inform both management of wild stocks and stock-
enhancement decisions. Moreover, the genetic map will be a valuable
resource for future genomics research in red drum, including physical
mapping and genome assembly.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.aquaculture.2014.08.045.
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