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Hybridization between closely related species has been documented across a

wide range of taxa but has not been well studied in elasmobranchs.

Hammerhead sharks have drawn global conservation concern because

they experience some of the highest mortality rates among sharks when

interacting with fisheries. Here we report on the detection of hybrids

between the globally distributed scalloped hammerhead (Sphyrna lewini)
and recently described Carolina hammerhead (S. gilberti) which are only

known from the western Atlantic Ocean. Using a genomics approach, 10

first-generation hybrids and 15–17 backcrosses were detected from 554

individuals. The identification of backcrosses demonstrates hybrids are

viable, and all backcrosses but one involved a scalloped hammerhead. All

hybrids but one possessed Carolina hammerhead mtDNA, indicating

sex-biased gene flow between species. Repeated hybridization and

backcrossing with scalloped hammerheads could lead to the loss of endemic

Carolina hammerheads.
1. Introduction
Hybridization between closely related species is ubiquitous in nature and

occurs in at least 10% of animal and 25% of plant species [1]. Hybridization

can be viewed as a constructive or destructive force, and potential consequences

have been reviewed at length [2–5]. Positive outcomes of hybridization include

movement of potential adaptive variation between species [6] and creation of

novel genotypes that can lead to radiation of new species [7–10]. Negative

effects of hybridization include reduction of fitness in endemic species via

outbreeding depression [11], or reduction of biodiversity via genetic or demo-

graphic swamping [12,13]. A recent review on hybridization in marine fishes

reported at least 111 hybrids involving 173 species, citing rarity of one parental

species and ecological overlap as important factors leading to hybridization

[14]. Little attention has been paid to hybridization in chondrichthyans in com-

parison with bony fishes, in large part because conserved morphology among

phylogenetically related species makes hybrids difficult to identify based

on morphology, and only a few studies have demonstrated contemporary

hybridization using genetic techniques [15–19].

The scalloped hammerhead, Sphyrna lewini, is a circumglobally distributed

shark found in tropical and warm temperate waters [20]. Scalloped hammer-

heads are dependent on coastal habitat as nursery grounds [21] and

reproductively active individuals are known to aggregate [22], making them
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Figure 1. Map of sample locations. (Online version in colour.)
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vulnerable to fisheries when targeted or caught as bycatch

[23]. Slow growth rates, low reproductive output [24], high

fishing mortality [23,25,26] and high value of their fins [27]

have resulted in declines in abundance throughout their

range. As a result, scalloped hammerheads are listed as glob-

ally Endangered by the International Union for Conservation

of Nature [23], and four out of six population segments

are listed as Threatened or Endangered under the U.S.

Endangered Species Act (ESA) [28].

Conservation efforts have been complicated by the recent

discovery of a cryptic congener, the Carolina hammerhead,

Sphyrna gilberti, which is sympatrically distributed with scal-

loped hammerheads in the western North Atlantic Ocean

[29]. The species are differentiated morphologically by non-

overlapping ranges of precaudal vertebrae counts (Carolina

hammerhead: 83–91, scalloped hammerhead: 92–99) and

estimated to have diverged 4.5 million years ago (95% CI

ca 2–10 Ma) [30]. Carolina hammerheads are only known

from specimens collected off the east coast of the USA from

North Carolina to Florida, with the exception of three indi-

viduals captured off southern Brazil [30]. Little is known

about the biology of Carolina hammerheads, but coastal

waters from South Carolina to central Florida may be impor-

tant nursery areas for this species [31], which is also critical

nursery habitat for scalloped hammerheads [32,33].

As part of a study designed to investigate nursery habitat

usage and relative abundance of scalloped and Carolina ham-

merheads in the US Atlantic and Gulf of Mexico (GoM),

diagnostic single-nucleotide polymorphisms (SNPs) that

were fixed between species were identified using double-

digest restriction associated DNA sequencing (ddRAD).

Individuals captured in nearshore habitats were genotyped

at each SNP, but the identity of 33 young-of-the-year (YOY)

individuals was equivocal. Inspection of genotypes of ambig-

uous individuals revealed some to be heterozygous at nearly

all diagnostic loci and some with approximately 75% alleles

from one species and 25% from the other, consistent with

contemporary hybridization. In this study, patterns of

hybridization between globally distributed scalloped

hammerheads and endemic Carolina hammerheads in the

western North Atlantic are assessed.

2. Methods
Fin clips were collected between 2010 and 2017 from 600 individ-

uals identified as scalloped hammerheads in situ from the US

Atlantic and GoM (figure 1), including 506 YOY, 83 juveniles

and 11 adults. Genomic DNA was extracted with a Mag-Bindw

Blood & Tissue DNA Kit (Omega Bio-Tek). Preparation of

ddRAD libraries followed a modified Peterson et al. (2012) proto-

col [34] (electronic supplementary material, methods). The

dDOCENT pipeline [35] was used to map reads to a de novo refer-

ence constructed from scalloped, Carolina and great (Sphyrna
mokarran) hammerhead sequences, and call SNPs. Raw variants

and individuals were filtered for quality using VCFtools [36]

(electronic supplementary material, methods). Individuals were

identified as scalloped hammerhead, Carolina hammerhead,

great hammerhead or undetermined using a custom Python

script and two panels of diagnostic SNPs, and a match of 95%

to one species was required for identification. Four individuals

identified as great hammerheads were removed from the dataset.

After filtering, 554 individuals genotyped at 2512 SNPs remained

in the dataset [37].

Hybrids were identified using the program NEWHYBRIDS, a

Bayesian clustering method that estimates the posterior
probability that an individual belongs to pure species or

hybrid genotype classes [38]. Posterior probabilities were calcu-

lated for five genotype classes: pure scalloped hammerhead,

pure Carolina hammerhead, F1 hybrid, scalloped hammerhead

backcross or Carolina hammerhead backcross. The F2 genotype

class (offspring of two hybrids) was not included owing to low

frequency of putative F1 hybrids suggested by the panel of diag-

nostic SNPs. Owing to computational limitations, the dataset of

2512 SNPs was reduced to a subset of 142 diagnostic SNPs for

the NEWHYBRIDS analysis. Five independent runs were conducted

with 1 000 000 sweeps following a 100 000 burn-in period, using

Jeffreys-like priors for estimating allele frequencies and mixing

proportions. Results of all runs were compared to ensure congru-

ence. Individuals were considered to belong to a specific

genotype class if the posterior probability for any single class

was greater than 0.80.

A discriminant analysis of principal components (DAPC)

[39] was conducted using the R package ADEGENET [40] as an

additional method of hybrid identification. DAPC is a multi-

variate method that identifies genetic clusters by

maximizing genetic differentiation between groups while

minimizing variation within. ADEGENET was used to simulate

100 individuals for each hybrid class to include in the DAPC

using genotypes of pure individuals of each species. Follow-

ing an initial principal component analysis to summarize

variability among individuals, unsupervised clustering was

performed for K ¼ 5. One hundred and fifty principal com-

ponents were retained, which resulted in both the lowest

mean square error and highest mean success of group

assignment in a cross-validation test.

The Bayesian clustering program STRUCTURE [41,42] was

used to estimate individual admixture coefficients (q) and

visualize admixture and distinctiveness between species. Five

runs of 1 000 000 iterations following a 250 000 burn-in

period were conducted for K ¼ 2, using STRAUTO [43] for auto-

mation and parallelization. Runs were summarized with

CLUMPAK [44], and STRUCTURE PLOT [45] was used to visual-

ize STRUCTURE and NEWHYBRIDS results. Pairwise FST

between pure scalloped and Carolina hammerheads was cal-

culated with the R package HIERFSTAT [46] using the Weir &

Cockerham method [47].

To determine the maternal species of hybrids, a 683-base pair

region of the mitochondrial control region (mtCR) was

sequenced for seven F1 hybrids, 12 scalloped hammerhead back-

crosses and one Carolina hammerhead backcross, using the

primers Pro-Shark (50-GCCCTTGGCTCCCAAAGC-30) and Phe-

Shark (50-TCATCTTAGCATCTTCAGTGCCA-30). See electronic

supplementary material, methods for PCR conditions.
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Figure 2. (a) DAPC results showing groupings of sampled and simulated individuals. Points are coloured according to the genotype class assigned in NEWHYBRIDS

analysis. BX indicates backcross. (b) Map depicting sampling locations of F1 hybrids, backcrosses (BX) and pure species individuals as determined by NEWHYBRIDS. The
Gulf of Mexico is not shown because no hybrids or Carolina hammerheads were detected there.

Table 1. The number of individuals assigned to each genotype class by
NEWHYBRIDS and DAPC.

genotype class NEWHYBRIDS DAPC

pure scalloped hammerhead 437 440

scalloped hammerhead backcross 16 13

F1 10 10

Carolina hammerhead backcross 1 2

pure Carolina hammerhead 90 89
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3. Results
Of the 33 unidentified individuals, 27 were assigned to a

hybrid class by NEWHYBRIDS (posterior probabilities greater

than 0.98), and 25 by DAPC (figure 2 and table 1; group mem-

bership probabilities greater than 0.97), and all hybrids were

YOY. Both methods detected the same 10 F1 hybrids but dif-

fered slightly in the number of backcrossed individuals;

differences are likely due to how each program handles miss-

ing data. NEWHYBRIDS ignores missing data, while DAPC

requires no missing data, so mean allele frequencies were

used to fill in missing genotypes. Owing to the comparatively

large number of scalloped hammerheads in the dataset, indi-

viduals with missing data were skewed toward scalloped

hammerhead genotypes; therefore NEWHYBRID results may be

more accurate. For both analyses, scalloped hammerhead

backcrosses (16 NEWHYBRIDS, 13 DAPC) were more common

than Carolina hammerhead backcrosses (1 NEWHYBRIDS, 2

DAPC). The remaining unidentified individuals were classi-

fied as pure scalloped or Carolina hammerheads. STRUCTURE

analysis indicated q was less than 1% for 503 individuals, 1–

5% for 23 individuals, and 6–50% for the remaining 28 indi-

viduals that had been flagged as admixed by at least one of

the two previous analyses (electronic supplementary material,

figure S1). Pairwise FST between pure scalloped and Carolina

hammerheads was 0.876. Analysis of mtCR haplotypes

showed all individuals but one possessed a Carolina hammer-

head haplotype (electronic supplementary material, data I;

accession nos KY315827.1 and MK173053), indicating most

observed instances of hybridization involved a female

Carolina hammerhead.

4. Discussion
Hybrids occurred where Carolina hammerheads are distribu-

ted in the US Atlantic (figure 2), with the greatest number in
South Carolina. The overall proportion of sampled individ-

uals assigned to a hybrid class was 4.5–4.9% (DAPC and

NEWHYBRIDS, respectively). It should be noted that some indi-

viduals identified as hybrids were captured in the same

location within a short timeframe (same day to two weeks

apart). In other shark species, brood mates are known to

associate for extended periods of time [48]; therefore, it is

possible some hybrids belong to the same brood. Because

the markers were diagnostic between species and Carolina

hammerheads have very few mtDNA haplotypes present in

the US Atlantic (four) [29,49], assessing sibling status was

not possible. However, if full siblings are present in our

data, the frequency of hybrid mating would be less than

the frequency of hybrid individuals. Regardless, identifi-

cation of YOY hybrids across multiple sampling years and

nurseries suggests contemporary hybridization is not exceed-

ingly rare. Low levels of admixture (1–5%) were detected in

some individuals (approx. 5%), consistent with introgression

between species. However, the species were strongly differen-

tiated (FST ¼ 0.876), and most individuals unambiguously

assigned to one of the pure species groups. This suggests

reproductive barriers exist, and the rate of admixture is not

yet sufficient to homogenize gene pools.
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Analysis of hybrid mtCR indicated Carolina hammer-

heads are nearly always the maternal species. Sex-bias in

hybridization is common and there are many drivers of this

phenomenon [50]. Rarity of conspecifics is thought to be a

primary driver of hybridization [14,50] and when the relative

abundance of hybridizing species differs, females of the rarer

species often engage in interspecific mating because of

increased contact frequencies with interspecific males relative

to conspecifics [51]. Current knowledge regarding the range

of Carolina hammerheads suggests they exist in a compara-

tively restricted region within the larger global distribution

of scalloped hammerheads; thus it seems likely Carolina

hammerheads are rare relative to scalloped hammerheads.

However, more research defining the distribution, relative

abundance and conservation status of Carolina hammer-

heads is needed to predict the effects of hybridization.

Differences in parental investment in offspring can also

drive unidirectional hybridization and theory predicts the

high investment sex will resist interspecific mating when an

adequate supply of conspecifics is available while the low

investment sex will not [50]. Female scalloped hammerheads

are live-bearing with relatively long gestation periods [24]

and make long migrations to deliver young to appropriate

nursery habitat [21], and may resist interspecific mating

while male scalloped hammerheads may not.

Hybridization poses a challenge to conservation when

species are threatened or endangered [52]. Difficulties arise

in setting guidelines because circumstances (e.g. natural

versus anthropogenic) and consequences of hybridization

are context specific and no single policy can encompass

every situation [52,53]. Hybridization can be a source of gen-

etic variation for imperilled species [52] and introduce

adaptive variants that facilitate species survival in changing

environments [6]. Alternatively, introgressive hybridization

threatens the genetic purity of parental species [54,55] and

can result in loss of rare species [2]. Results of this study

suggest hybridization is nearly unidirectional, with female

Carolina hammerheads mating with male scalloped hammer-

heads, and F1 hybrids nearly always backcrossing into

scalloped hammerheads: a pattern that could lead to the

loss of Carolina hammerheads over time. The identification

of backcrossing and introgression in our data indicates F1

hybrids are viable; however, if later generation hybrids

have reduced fitness, hybridization could threaten Carolina

hammerheads through wasted reproductive effort [2].
In the final determination, US ESA protection for scal-

loped hammerheads in the northwest Atlantic and GoM

was not warranted [28]. However, this decision did not con-

sider the presence of the sympatrically distributed and

morphologically indistinguishable Carolina hammerhead,

which has undoubtedly been included in previous assess-

ments for scalloped hammerheads. Life-history data also

likely contain information from both species, which could

severely bias results that rely heavily on von Bertalanffy

growth parameter estimates [56]. Future decisions regarding

the conservation status of scalloped hammerheads will not

only have to consider the presence and status of Carolina

hammerheads, but should also consider the potential

consequences of continued hybridization between these

vulnerable species.
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